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Abstract. We study the handbag contribution to two-photon annihilation into baryon–antibaryon pairs
at large energy and momentum transfer. We derive factorization of the process amplitude into a hard
γγ → qq subprocess and form factors describing the soft qq → BB transition, assuming that the process
is dominated by configurations where the (anti)quark approximately carries the full momentum of the
(anti)baryon. The form factors represent moments of time-like generalized parton distributions, so-called
BB distribution amplitudes. A characteristic feature of the handbag mechanism is the absence of isospin-
two components in the final state, which in combination with flavor symmetry provides relations among
the form factors for the members of the lowest-lying baryon octet. Assuming dominance of the handbag
contribution, we can describe current experimental data with form factors of plausible size, and predict
the cross sections of presently unmeasured BB channels.

1 Introduction

In this article we study the annihilation of two photons
into baryon–antibaryon (BB) pairs at large Mandelstam
variables s ∼ −t ∼ −u in the handbag approach re-
cently developed for two-photon annihilation into pairs
of mesons [1]. As in the meson case, the handbag ampli-
tude (see Fig. 1) factorizes into a hard γγ → qq subprocess
and form factors representing moments of generalized dis-
tribution amplitudes [2,3]. These distribution amplitudes
are time-like versions of generalized parton distributions,
which encode the soft physics information in processes
such as deeply virtual [4,5] or wide-angle [6,7] Compton
scattering. The latter is in fact related to two-photon anni-
hilation by crossing. It is important to realize that, since
we take the BB system to have a large invariant mass,
the qq → BB transition can only be soft if the additional
qq and possibly gluon pairs created in the hadronization
process have soft momenta. In other words, the initial
quark and antiquark must each take approximately the
full momentum of one final state hadron. Compared to
the case of mesons, our derivation for baryons will make
the additional, plausible, assumption that the process is
dominated by configurations where it is the quark that ap-
proximately moves in the direction of the baryon, whereas
the antiquark approximately moves in the direction of the
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antibaryon. This assumption is equivalent to the valence
quark approximation, widely used in other contexts.

For both processes, wide-angle Compton scattering off
baryons and two-photon annihilation into BB pairs, the
handbag contribution can dominate for large but not
asymptotically large Mandelstam variables. Asymptoti-
cally the leading-twist contribution will take over, where
in contrast to the handbag mechanism all valence quarks
of the involved hadrons participate in the hard scatter-
ing [8]. The handbag contribution formally represents a
power correction to the leading-twist one. The onset of
the leading-twist regime is however expected to occur for
s much larger than experimentally available. A more de-
tailed discussion of the relation between the leading-twist
and soft handbag mechanisms, and of other power sup-
pressed contributions is given in [1].

Two-photon annihilation into hadrons pairs has also
been studied for the case where one of the photons has
a virtuality Q2 much larger than the squared invariant
mass s of the hadron pair. In this kinematics, which is
complementary to the one studied in the present article,
handbag factorization of the process amplitude has been
shown to hold for asymptotically large photon virtualities
[2,3,9]. In other words, the handbag provides the leading-
twist contribution in the limit of large Q2 at fixed s.

Our paper is organized as follows: In Sect. 2 we de-
fine the BB distribution amplitudes and discuss some of
their properties. Section 3 is devoted to the calculation of
the handbag amplitude for γγ → BB. Flavor symmetry
properties of the handbag amplitude are investigated in
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Fig. 1. a Handbag factorization of baryon pair production γγ → BB at large s, t, and u. The hard-scattering subprocess is
shown at leading order in αs, and the blob represents the BB distribution amplitude. A second graph is obtained by interchanging
the photon vertices. b The physical mechanism of the handbag diagrams. The quark hadronizes into B and the antiquark into
B, with any number of soft partons connecting the two parton–hadron vertices

Sect. 4, and a comparison to experiment is presented in
Sect. 5. We end our paper with a few concluding remarks.

2 Distribution amplitudes
for baryon–antibaryon pairs

Generalized distribution amplitudes for meson pairs have
been discussed in detail in the literature [3,10]. Here we
introduce their counterparts for baryon–antibaryon pairs
and present some of their general properties. We use light-
cone coordinates v = [v+, v−,v⊥] with v± = (v0 ± v3)/√

2 for any four-vector v, and define BB distribution am-
plitudes in light-cone gauge by

P+
∫

dx−

2π
e−izP+x−

out
〈
B(pν)B(p′ν′)

∣
∣q(x̄)γ+q(0)

∣
∣0

〉

= Φq
V (z, ζ, s)u(pν)γ+v(p′ν′)

+Φq
S(z, ζ, s)

P+

2m
u(pν)v(p′ν′),

P+
∫

dx−

2π
e−izP+x−

out
〈
B(pν)B(p′ν′)

∣
∣q(x̄)γ+γ5q(0)

∣
∣0

〉

= Φq
A(z, ζ, s)u(pν)γ+γ5v(p′ν′)

+Φq
P (z, ζ, s)

P+

2m
u(pν)γ5v(p′ν′), (1)

with x̄ = [0, x−,0⊥]. Here m denotes the mass of the
baryons and ν, ν′ denote their helicities. We have further
introduced the sum P = p + p′ of the baryon momenta,
the invariant mass s = P 2 of the baryon pair, and the
skewness

ζ = p+/P+. (2)

In the following we will also use the notation ζ = 1−ζ. We
have not displayed the dependence of the BB distribution
amplitudes on the factorization scale µ2, which is governed
by the well-known evolution equations for the distribution
amplitudes of a single meson with appropriate quantum
numbers.

The BB distribution amplitudes are the time-like ver-
sions of generalized parton distributions for a baryon B.
Let us briefly comment on the relation of our definitions
(1) with those of the generalized parton distributions H,
E, H̃, Ẽ, introduced in [4]. Comparing the Lorentz struc-
tures that multiply the distributions and taking into ac-
count that p′+ turns into −p′+ under crossing of B(p′ν′) to

B(p′ν′), we recognize ΦA and ΦP as the respective coun-
terparts of H̃ and Ẽ. In the vector channel one may use
the Gordon decomposition

u(pν)
i

2m
σ+ρ(p + εp′)ρv(p′ν′) (3)

=
1
2
(1 + ε)u(pν)γ+v(p′ν′)

− 1
2m

(p − εp′)+u(pν)v(p′ν′),

with ε = ±1 to trade the scalar current for the tensor
one. By crossing the defining relation for H and E one
would obtain the scalar current u(pν)v(p′ν′) multiplied
with (p′ − p)+ = (1 − 2ζ)P+ instead of P+. Defining a
distribution amplitude Φ̃S with such a prefactor would
however introduce an artificial singularity of Φ̃S(z, ζ, s)
at ζ = 1/2, since there is no symmetry by which (p′ −
p)+Φ̃S(z, ζ, s) = P+ΦS(z, ζ, s) has to vanish at p+ = p′+.
This is in contrast to the case of the generalized parton
distribution Ẽ, where due to time reversal invariance the
product (p′ − p)+Ẽ occurring in its definition is zero for
p+ = p′+.

Integrating (1) over z reduces the bilocal BB matrix
elements to local ones. In analogy to the space-like case
we obtain a set of sum rules,

F q
i (s) =

∫ 1

0
dzΦq

i (z, ζ, s) for i = V, A, P,

(1 − 2ζ)F q
S(s) =

∫ 1

0
dzΦq

S(z, ζ, s) (4)

with time-like form factors defined as

out
〈
B(pν)B(p′ν′)

∣
∣q(0)γρq(0)

∣
∣0

〉
(5)

= F q
V u(pν)γρv(p′ν′) + F q

S

(p′ − p)ρ

2m
u(pν)v(p′ν′),

out
〈
B(pν)B(p′ν′)

∣
∣q(0)γργ5q(0)

∣
∣0

〉

= F q
Au(pν)γργ5v(p′ν′) + F q

P

(p′ + p)ρ

2m
u(pν)γ5v(p′ν′)

for each flavor. Appropriate combinations give the form
factors of the electromagnetic and weak currents, for in-
stance the magnetic and Pauli form factors
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GM (s) =
∑

q

eqF
q
V (s), F2(s) =

∑

q

eqF
q
S(s). (6)

The relations (4) are valid for any physical value of the
skewness ζ. They also hold for any value of the factor-
ization scale µ2 of the distribution amplitudes, since the
vector and axial vector currents have zero anomalous di-
mension and the form factors FV,S and FA,P are scale in-
dependent. Taking higher moments in (2z −1) leads to µ2

dependent form factors of local operators with derivatives,
multiplied by polynomials in (2ζ − 1).

From charge-conjugation invariance we find the sym-
metry relations

Φq
i (z, ζ, s) = Φq

i (z, ζ, s) for i = V, A, P,

Φq
S(z, ζ, s) = −Φq

S(z, ζ, s), (7)

with z = 1 − z. For ζ = 1/2 the distribution amplitudes
ΦV,A,P are hence symmetric under the replacement z ↔ z,
while ΦS is antisymmetric (but not zero). One may con-
sider BB-states of definite charge-conjugation symmetry

∣
∣C±〉

=
1
2

∣
∣
∣B(p, ν)B(p′ν′) ∓ B(p′, ν′)B(pν)

〉
, (8)

satisfying
C∣
∣C±〉

= ±∣
∣C±〉

, (9)

where the operator C implements charge conjugation in
Hilbert space. Replacing the state 〈B(p, ν)B(p′ν′)| with
〈C±| in the definition (1), we obtain on its right-hand
side the linear combinations

Φ
q(±)
i (z, ζ, s) =

1
2

[
Φq

i (z, ζ, s) ∓ Φq
i (z, ζ, s)

]
, (10)

for i = V, S, and

Φ
q(±)
i (z, ζ, s) =

1
2

[
Φq

i (z, ζ, s) ± Φq
i (z, ζ, s)

]
, (11)

for i = A, P , where we have used the symmetry relations
(7). With the same relations one finds that Φ

q(+)
V and

Φ
q(−)
S,A,P are odd under the replacement ζ ↔ ζ, which im-

plies zeroes of these distribution amplitudes at ζ = 1/2.
Note also that the C-even combinations Φ

q(+)
V,S are anti-

symmetric under the replacement z ↔ z and therefore
disappear in the sum rules (4). This is consistent with
the properties of the form factors FV and FS , which are
C-odd. The reverse situation occurs for the C-odd combi-
nations Φ

q(−)
A,P , which do not enter (4) in agreement with

the C-even nature of FA and FP .
The distribution amplitudes Φi(z, ζ, s) are complex

quantities, with phases due to the interactions in the BB
system. Because of time reversal invariance they also pa-
rameterize matrix elements with baryons in the initial
state,

P+
∫

dx−

2π
eizP+x−〈

0
∣
∣q(0)γ+q(x̄)

∣
∣B(pν)B(p′ν′)

〉
in

= Φq
V (z, ζ, s)v(p′ν′)γ+u(pν)

+Φq
S(z, ζ, s)

P+

2m
v(p′ν′)u(pν),

P+
∫

dx−

2π
eizP+x−〈

0
∣
∣q(0)γ+γ5q(x̄)

∣
∣B(pν)B(p′ν′)

〉
in

= Φq
A(z, ζ, s)v(p′ν′)γ+γ5u(pν)

−Φq
P (z, ζ, s)

P+

2m
v(p′ν′)γ5u(pν). (12)

Notice the change of sign in front of ΦP .
We finally remark that distribution amplitudes for pairs

B1B2 involving different baryons can be defined as in (1).
The charge-conjugation relations (7) do not hold for these
quantities, but they do for distribution amplitudes of the
symmetrized states |B1(pν)B2(p′ν′) + B2(pν)B1(p′ν′)〉.

3 The handbag amplitude

We will now derive the expression for the soft handbag
contribution to γγ → BB. The first steps of the deriva-
tion go in complete analogy to the case of meson pair pro-
duction. We thus start by summarizing the corresponding
results of [1], and then proceed from the point where the
different nature of baryons and mesons leads to impor-
tant differences. In [1] we found an appropriate frame to
be the c.m. of the reaction, with axes chosen such that
the process takes place in the 1–3 plane and the outgo-
ing hadrons fly along the positive or negative 1 direction.
Thus, we have baryon momenta

p =
√

s

8

[
1, 1,

√
2βe1

]
, p′ =

√
s

8

[
1, 1, −

√
2βe1

]
, (13)

with the relativistic velocity β =
√

1 − 4m2/s and e1 =
(1, 0). We hence have skewness ζ = 1/2. The photon mo-
menta read

q =
√

s

8

[
1 + sin θ, 1 − sin θ,

√
2 cos θe1

]
,

q′ =
√

s

8

[
1 − sin θ, 1 + sin θ, −

√
2 cos θe1

]
, (14)

where θ is the c.m. scattering angle. In terms of the usual
Mandelstam variables we have

cos θ =
t − u

s
, sin θ =

2
√

tu

s
(15)

up to corrections of order m2/s. The handbag amplitude
for our process can be written in terms of the hard-scat-
tering kernel for γγ → qq

Hαβ(k, k′) (16)

=
[
ε · γ

(k − q) · γ

(k − q)2 + iε
ε′ · γ + ε′ · γ

(q − k′) · γ

(q − k′)2 + iε
ε · γ

]

αβ

with photon polarization vectors ε = ε(q, µ) and ε′ =
ε(q′, µ′), and a matrix element describing the qq → BB
transition. Our starting expression thus is
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A =
∑

q

(eeq)2
∫

d4k

∫
d4x

(2π)4
e−ik·x (17)

× out
〈
B(pν)B(p′ν′)

∣
∣Tqα(x)qβ(0)

∣
∣0

〉
Hαβ(k, k′),

where the summation index q refers to the quark flavors
u, d, s. In H we have omitted terms suppressed by the
current quark masses.

As discussed in detail in [1], the qq → BB transition
at large invariant mass s can only be soft if the incom-
ing quark and antiquark have small virtualities and each
carry approximately the momentum of the baryon or an-
tibaryon. To quantify this, we define z = k+/P+ and pa-
rameterize the on-shell approximations of the quark and
antiquark momenta k and k′ as

k̃ =
√

s

2

[
z, z̄,

√
2zz̄e⊥

]
, k̃′ =

√
s

2

[
z̄, z, −

√
2zz̄e⊥

]
,

(18)
where e⊥ = (cos ϕ, sin ϕ). The requirements derived in [1]
then read

2z − 1, sin ϕ ∼ Λ2

s
, (19)

where Λ is a hadronic scale of order 1 GeV. In addition,
the minus- and transverse momenta of k − k̃ and k′ − k̃′
must be of order Λ2/

√
s. As shown in [1,7], the dominant

Dirac structure of the soft matrix element in (17) involves
the good components of the quark fields in the parlance
of light-cone quantization. Projecting these out we have

Aνν′,µµ′ = −
∑

q

(eeq)2
∫

d4k
1√

4k+k′+

×
[
Hµµ′(k̃, k̃′)Sq(k, k′) + H5

µµ′(k̃, k̃′)S5
q (k, k′)

]

+ O(Λ2/s), (20)

where we have now made explicit the dependence on the
photon and baryon helicities µ, µ′ and ν, ν′, respectively.
Here we have introduced the soft matrix elements1

Sq =
1
2

∫
d4x

(2π)4
e−ik·x

×out
〈
B(pν)B(p′ν′)

∣
∣Tq(x)γ+q(0)

∣
∣0

〉
, (21)

and S5
q with γ+ replaced by γ+γ5. The hard subprocess

amplitudes of γγ → qq for the helicity sum and difference
of the quark read

Hµµ′(k̃, k̃′) =
∑

λ=±1/2

u(k̃, λ)Hµµ′(k̃, k̃′)v(k̃′, −λ),

H5
µµ′(k̃, k̃′) =

∑

λ=±1/2

2λu(k̃, λ)Hµµ′(k̃, k̃′)v(k̃′, −λ), (22)

where we have approximated the parton momenta with
their on-shell values. The expressions (20) and (22) imply

1 Note that we define soft matrix elements for states with
definite baryon momentum here, and not for states 〈C+| with
definite charge parity as in [1]

the phase conventions for light-cone spinors given in the
appendix. With these conventions the behavior of helicity
amplitudes under a parity transformation is Aνν′,µµ′ =
η(−1)ν−ν′−µ+µ′A−ν−ν′,−µ−µ′ , where η is the product of
the intrinsic parities of the four particles involved.

According to our hypothesis that the qq → BB tran-
sition is dominated by soft processes, the matrix elements
Sq(k, k′) and S5

q (k, k′) should be strongly peaked when
(19) is fulfilled. Depending on whether ϕ ≈ 0 or ϕ ≈ π this
means that we have k ≈ p or k′ ≈ p. The case k′ ≈ p corre-
sponds to the antiquark hadronizing into B and the quark
into B. This requires sea quarks with a very high momen-
tum fraction in a baryon. We expect this to be disfavored
compared with the case k ≈ p, both from phenomenolog-
ical and theoretical considerations. A rather direct piece
of information is for instance the ratio of quark and anti-
quark distributions in a nucleon at large momentum frac-
tion x. Neglecting configurations with k′ ≈ p compared
with k ≈ p, we proceed by Taylor expanding H(k̃, k̃′) and
H5(k̃, k̃′) around z = 1/2 and ϕ = 0, keeping only the
leading order in Λ2/s. We get H(5)

−− = H(5)
++ = 0 and

H+−(k̃, k̃′) = H−+(k̃, k̃′) (23)

= 2
(√

û/t̂ −
√

t̂/û
)

= 2
t − u√

tu
+ O(Λ2/s),

H5
+−(k̃, k̃′) = −H5

−+(k̃, k̃′)

= 2
(√

û/t̂ +
√

t̂/û
)

= 2
s√
tu

+ O(Λ2/s),

where t̂ and û are the Mandelstam variables of the hard
subprocess, with quark and antiquark momenta put on
shell. For better legibility, explicit helicities are labeled
only by their signs here and in the following. The ampli-
tudes with equal photon helicities µ = µ′ will be non-zero
at next-to-leading order in αs, in analogy to the photon
helicity flip transitions in large-angle Compton scattering
[11]. With (23) the loop integration in (20) now only con-
cerns the soft matrix elements and leads to moments of
BB distribution amplitudes. With dk+/(4k+k′+)1/2 � dz
and the definitions of Sect. 2 we obtain

Aνν′,µµ′ = −
∑

q

(eeq)2
∫ 1

0
dz (24)

×
{

Hµµ′(p, p′)
[
Φq

V (z, ζ = 1
2 , s)

1
2P+ u(pν)γ+v(p′ν′)

+ Φq
S(z, ζ = 1

2 , s)
1

4m
u(pν)v(p′ν′)

]

+H5
µµ′(p, p′)

[
Φq

A(z, ζ = 1
2 , s)

1
2P+ u(pν)γ+γ5v(p′ν′)

+ Φq
P (z, ζ = 1

2 , s)
1

4m
u(pν)γ5v(p′ν′)

]}

+O(Λ2/s).

Because of (7) the scalar distribution amplitude ΦS de-
couples in our frame with ζ = 1/2. Evaluating the spinor
products with the conventions given in the appendix, in-
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cluding terms suppressed only by m/
√

s), we arrive at our
final result for the γγ → BB amplitudes:

Aνν′,+− = −(−1)ν−ν′A−ν−ν′,−+ = 4παelm
s√
tu

×
{

δν−ν′
t − u

s
RV (s)

+ 2νδν−ν′
[
RA(s) + RP (s)

]
−

√
s

2m
δνν′RP (s)

}

+O(Λ2/s), (25)

where we have defined the annihilation form factors by

Ri(s) =
∑

q

e2
qF

q
i (s) for i = V, A, P, (26)

with F q
i from (4). As in wide-angle Compton scattering off

baryons [7] there are only three independent form factors.
In Compton scattering it is the pseudoscalar rather than
the scalar form factor that does not contribute, due to
different choices of the reference frames. The unpolarized
differential cross section is given by

dσ

dt
(γγ → BB) =

4πα2
elm

s2

1
sin2 θ

{∣
∣
∣RV (s)

∣
∣
∣
2
cos2 θ

+
∣
∣
∣RA(s) + RP (s)

∣
∣
∣
2

+
s

4m2

∣
∣
∣RP (s)

∣
∣
∣
2
}

. (27)

Several comments on our result (25) are in order. Un-
like RA and RP , the vector form factor RV projects on
the C-odd part of the BB state, whereas a γγ collision
produces of course its C-even projection. This is a re-
sult of the approximations that lead from (20) to (24),
namely of neglecting configurations where the q emerg-
ing from the two-photon annihilation hadronizes into the
baryon B instead of the antibaryon B. To take this contri-
bution into account, one can split the loop integration over
k⊥ = (k1, k2) into the two hemispheres where k1 is either
positive or negative. In the former case one can expand the
hard-scattering amplitudes around ϕ = 0, and in the latter
around ϕ = π. For ϕ = π we then get H+− ≈ 2(u−t)/

√
tu

instead of 2(t − u)/
√

tu as in (23). The sum over both
hemispheres thus gives a result proportional to H+−(p, p′)
times ∫

dk−d2k⊥sgn(k1)Sq(k, k′), (28)

instead of the integral
∫

dk−d2k⊥Sq(k, k′), (29)

which we used to express our result in terms of the distri-
bution amplitude ΦV . The integrated matrix elements (28)
and (29) have opposite behavior under charge conjugation,
but to the extent that the region k ≈ p′ gives a small con-
tribution compared to the region k ≈ p, their difference
can be neglected. In our derivation we have preferred the
form (29) that leads to matrix elements of light-cone oper-
ators with well-known properties, at the price of a loss in

accuracy which we do not expect to be critical. We remark
that for baryon helicities ν = ν′ both (28) and (29) are
odd under z ↔ z in our reference frame, which results in a
zero contribution to the amplitude after integration over
z. This can be shown by performing a charge conjugation
followed by a rotation of 180◦ around the 3-axis. The am-
plitudes with opposite baryon helicities ν = −ν′ do not de-
couple in this way, because charge conjugation exchanges
the helicities of B and B. We finally emphasize that the
amplitude (25) for the γγ → BB process does have the
correct behavior under charge conjugation, which for our
spinor convention reads Aνν′,µµ′ = (−1)ν−ν′−µ+µ′Aν′ν,µ′µ
in this channel.

For the sake of comparison let us mention what hap-
pens if we make the corresponding approximations in
wide-angle Compton scattering. Using that contributions
where a fast antiquark is emitted from and reabsorbed
by the baryon are small, one may count them with the
“wrong” sign in the Compton form factors RV (t) and
RT (t) of [7]. Replacing then the explicit factors 1/x with
1, we obtain approximations RV (t) ≈ ∑

q e2
qF

q
1 (t) and

RT (t) ≈ ∑
q e2

qF
q
2 (t) in terms of the space-like Dirac and

Pauli form factors, in analogy with our result here.
The amplitude (25) shows important differences com-

pared with the one we obtained in [1] for production of a
pair of pseudoscalar mesons. Similarly to the BB ampli-
tudes with ν = ν′, the matrix element corresponding to
(28) vanishes there when integrated over z. Due to parity
invariance the corresponding contribution from S5

q is also
zero, so that the leading term in the Taylor expansion (23)
of the hard subprocess gives a vanishing scattering ampli-
tude. We thus had to include the first non-leading term in
this expansion, which is proportional to z − z. If one were
to do the same in the BB case, one would get a further
term in (25). It would involve

∫
dz(2z − 1)ΦS(z, 1/2, s),

which is a form factor of the quark energy-momentum
tensor, in analogy to the meson pair case. Such a sublead-
ing contribution would behave as 1/(tu) in the amplitude
instead of 1/

√
tu, and give a 1/ sin4 θ rather than 1/ sin2 θ

dependence in the cross section.
Returning to our result (25), we observe that the pseu-

doscalar annihilation form factor RP generates amplitudes
with equal helicities of the baryon and antibaryon, i.e.,
with their spin projections along p coupled to zero. The
spins of quark and antiquark in the qq → BB transition
do then not sum up to those of the BB system, which
implies that parton configurations with non-zero orbital
angular momentum along p are required in RP . One ex-
pects that at large s such quantities are suppressed com-
pared with RV or RA. An analog in the space-like re-
gion are the form factors RT (t) versus RV (t), and their
electromagnetic counterparts F2(t) versus F1(t). Recent
measurements from Jefferson Lab [12] indicate that for
−t between 1 and 5.6 GeV2 the ratio F2(t)/F1(t) approx-
imately scales as m/

√−t. Assuming a similar behavior of
RP (s)/RA(s) one finds that the term with s|RP (s)|2 in
(27) will not start to dominate over the other terms with
increasing s.
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We see in (27) that the form factor RV can be sep-
arated from the two others through measurement of the
angular distribution of the BB pair, given data of suffi-
cient accuracy. This requires some lever arm in θ, but must
stay within the validity of our approach, which is not ap-
plicable for θ near 0 or π, where the γγ → qq subprocess
is no longer hard.

A separation of RA and RP can only be performed
with suitable polarization measurements. Our amplitudes
(25) are evaluated for states with definite light-cone helic-
ities, which is natural within our framework and leads to
simple expressions. In the unpolarized cross section this
does not matter, but for polarization observables the use
of the ordinary c.m.s. helicity basis is more convenient.
The transformation from one helicity basis to the other
can be found in [13]. In our kinematics, the c.m.s. helicity
amplitudes M read

Mνν′,µµ′ = Aνν′,µµ′ (30)

+
m√
s

[2νA−νν′,µµ′ + 2ν′Aν−ν′,µµ′ ] + O(m2/s).

An observable capable of separating RP from the other
form factors is, for instance, the helicity correlation CLL

between baryon and antibaryon, given by

CLL =
dσ(++) − dσ(+−)
dσ(++) + dσ(+−)

(31)

= −

∣
∣
∣RA(s) + RP (s)

∣
∣
∣
2

+ cos2 θ
∣
∣
∣RV (s)

∣
∣
∣
2

− s

4m2

∣
∣
∣RP (s)

∣
∣
∣
2

∣
∣
∣RA(s) + RP (s)

∣
∣
∣
2

+ cos2 θ
∣
∣
∣RV (s)

∣
∣
∣
2

+
s

4m2

∣
∣
∣RP (s)

∣
∣
∣
2 ,

where dσ(ν, ν′) is the cross section for polarized BB pro-
duction.

One may also consider the time-reversed process BB →
γγ, which for the case of proton–antiproton collisions may
be experimentally accessible and has already been men-
tioned in [14]. Time reversal invariance relates the ampli-
tudes of both processes by

ABB→γγ
µµ′,νν′ (s, t) = Aγγ→BB

νν′,µµ′ (s, t). (32)

Up to an extra (1 − 4m2/s)−1 in the phase space fac-
tor, BB → γγ has therefore the same cross section as
γγ → BB. The relation between the BB distribution am-
plitudes for baryons in the initial or in the final state has
already been given in Sect. 2. As in the case of wide-angle
Compton scattering [15], one can finally generalize our
approach to the case of virtual photons, provided their
virtualities are at most of order s.

4 Flavor symmetry

We are now going to discuss various BB channels where B
is a member of the lowest-lying octet of baryons. We shall
derive relations among the various amplitudes and form
factors in order to simplify the analysis of experimental

data on these cross sections, and to explore generic con-
sequences of soft handbag dominance.

Relations among the various BB channels are obtained
by exploiting flavor symmetry, i.e. isospin and U -spin in-
variance. The latter is the symmetry under the exchange
d ↔ s, and relates for instance the pp and the Σ+Σ

−

channels. Since the photon behaves as a U -spin singlet
while (p, Σ+) and (Σ

−
, p) are doublets, U -spin conserva-

tion leads to

A(Σ+Σ
−

) � A(pp). (33)

In contrast to isospin breaking, which is known to hold
on the percent level and will be neglected here, U -spin
violations cannot numerically be ignored. This is indicated
in (33) and in later relations by the approximate symbol.
In analogy to (33) one has

A(Ξ−Ξ
+
) � A(Σ−Σ

+
). (34)

Other consequences of U -spin symmetry hold for the U -
spin triplet

(
n, 1

2 [Σ0 +
√

3Λ], Ξ0
)

and the U -spin singlet
1
2 [Λ − √

3Σ0]. Together with the corresponding transfor-
mation properties of the antiparticles one obtains

A(Ξ0Ξ
0
) � A(nn) � 1

2

[
A(Σ0Σ

0
) − 3A(ΛΛ)

]
,

A(ΛΣ
0
) � A(Σ0Λ) �

√
3

2

[
A(ΛΛ) − A(Σ0Σ

0
)
]
. (35)

Notice that the preceding U -spin relations hold in any
dynamical approach respecting SU(3) flavor symmetry.

To proceed, we use the fact that the handbag mecha-
nism involves intermediate qq-states,

γγ → qq → BB, (36)

and generically decompose the γγ amplitudes as

A(BB) =
∑

q

e2
qA

B
q . (37)

We have omitted helicity labels since the following results
hold for any set of helicities. The decomposition (37) al-
ready follows from (17) and thus is more general than
our result (25). It does not rely on our neglect of vari-
ous O(Λ2/s) effects, nor of contributions where a fast q
hadronizes into a baryon.

A characteristic feature of the handbag mechanism is
that the intermediate qq state can only be coupled to
isospin I = 0 and I = 1, but not to I = 2. This leads
to particular strong restrictions in the Σ sector, where it
reduces the number of independent partial amplitudes AΣ

q

to three, one for each flavor. The absence of the isospin-
two component of ΣΣ implies the following relation for
the amplitudes:

A(Σ0Σ
0
) = −1

2

[
A(Σ−Σ

+
) + A(Σ+Σ

−
)
]
, (38)
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which provides bounds on the (integrated or differential)
Σ0Σ

0
cross section,

1
2

∣
∣
∣
∣

√
σ(Σ+Σ

−
) −

√
σ(Σ−Σ

+
)
∣
∣
∣
∣ ≤

√
σ(Σ0Σ

0
)

≤ 1
2

(√
σ(Σ+Σ

−
) +

√
σ(Σ−Σ

+
)
)

. (39)

This follows from isospin invariance alone and thus is a
robust prediction of handbag dominance.

Combining the relations due to isospin and to U -spin,
in particular the absence of final states with I = 2 for the
handbag, we find that all BB channels are described by
only three independent partial amplitudes, which one may
take to be those of the pp channel, Ap

u, Ap
d and Ap

s . The
compiled relations of the other partial amplitudes to the
proton ones read

An
u = Ap

d, An
d = Ap

u, An
s = Ap

s ,

AΣ+

u = AΣ−
d � Ap

u, AΣ+

d = AΣ−
u � Ap

s ,

AΣ+

s = AΣ−
s � Ap

d,

AΣ0

u = AΣ0

d � −1
2
[Ap

u + Ap
s ],

AΣ0

s = −AΣ+

s � −Ap
d,

AΛ
u = AΛ

d � −1
6
[Ap

u + 4Ap
d + Ap

s ],

AΛ
s � −1

3
[2Ap

u − Ap
d + 2Ap

s ],

AΛΣ
0

u = −AΛΣ
0

d �
√

3
6

[Ap
u − 2Ap

d + Ap
s ], AΛΣ

0

s = 0,

AΣ0Λ
u = −AΣ0Λ

d � AΛΣ
0

u , AΣ0Λ
s = 0,

AΞ−
u = AΞ0

d � Ap
s , AΞ−

d = AΞ0

u � Ap
d,

AΞ−
s = AΞ0

s � Ap
u. (40)

We now take recourse to valence quark dominance,
which allows us to use the amplitudes (25) and the form
factors F q,B

i (s). Valence quark dominance implies F s,p
i (s)

= 0. With this simplification the symmetry relations (40)
hold for the form factors F q,B

i (s) as well, separately for
i = V, A, P . We emphasize that in the context of the soft
handbag amplitude, valence quark dominance does not as-
sume that non-valence Fock states are unimportant, since
any number of soft partons with appropriate quantum
numbers can connect the two parton–hadron vertices in
Fig. 1b. Rather, we neglect contributions from sea quarks
that carry almost all the momentum of a baryon, which
should be a good approximation.

With regard to the accuracy of the present data on
γγ → BB we simplify further by taking a single value ρ
for the d/u ratio of all proton form factors F p

V , F p
A, F p

P ,

F d,p
i = ρFu,p

i , i = V, A, P. (41)

For the numerical analysis we will perform in Sect. 5 this
is not a severe restriction, since we find the annihilation

cross sections dominated by the sum of the axial and the
pseudoscalar form factor. The parameter ρ in (41) is then
essentially the one for the combination FA + FP . For fur-
ther simplicity we will assume ρ to be real-valued and inde-
pendent of s in our analysis. The ansatz F d,p

i (s) ∝ Fu,p
i (s)

parallels the behavior of fragmentation functions for d → p
and u → p transitions. The d/u ratio in fragmentation is
not well known; a value of ρ = 1/2 is for instance chosen
in [16]. For time-like form factors one obtains the same
value by analytic continuation to the point s = 0, where
the Dirac form factors are F d,p

1 (0) = 1 and Fu,p
1 (0) = 2, if

one makes the assumption that their ratio does not change
significantly between s = 0 and large time-like s. A value
of ρ = 1 on the other hand is suggested by the fact that
both u and d are valence quarks of the proton, and in or-
der to produce the proton two quarks have to be created
from the vacuum in both cases. Still different, the Lund
Monte Carlo event generator [17] provides a value of only
0.25 for leading protons (with z > 0.5).

On the basis of this simple model for the soft physics
input to the handbag approach, we can write the BB am-
plitudes as

A(BB) = rBA(pp), (42)

where rB = rB(ρ). The ratios of differential or integrated
cross sections are then determined by r2

B . These factors
read

rn =
1 + 4ρ

4 + ρ
,

rΣ− � 1 + ρ

4 + ρ
, rΣ0 � −1

2
5 + 2ρ

4 + ρ
, rΣ+ � 1,

rΛ � −3
2

1 + 2ρ

4 + ρ
,

r
ΛΣ

0 � rΣ0Λ �
√

3
2

1 − 2ρ

4 + ρ
,

rΞ0 � 1 + 4ρ

4 + ρ
, rΞ− � 1 + ρ

4 + ρ
. (43)

We recall that these relations receive corrections from
SU(3) flavor symmetry breaking. An investigation of the
size and pattern of such corrections is beyond the scope of
this work. We will see that neglecting them at the present
stage is justified by the accuracy of the available data.

5 Comparison with experiment

A suitable and sufficiently precise set of data would allow
for an experimental determination of the annihilation form
factors, quite analogous to the measurement of electro-
magnetic form factors. As already mentioned, the angular
distribution of the BB pair allows one to separate RB

V from
the combination of RB

A and RB
P given in (27). The present

data [18–21] on unpolarized cross sections (we exclude low-
energy data from our study) does not permit such detailed
investigation. Moreover, most data are taken at energies
which are rather low for the kinematic requirement of large
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s, t, u in the handbag approach. Below
√

s � 3 GeV the
dynamics may be dominated by resonances.

It has long been known [8] that for asymptotically
large s the process is amenable to a leading-twist QCD
treatment, where the transition amplitude factorizes into
a hard-scattering amplitude for γγ → qq̄qq̄qq̄ and a single-
baryon distribution amplitude for each baryon. As already
mentioned in the introduction, the leading-twist result [22]
is way below the experimental data. This holds in partic-
ular if the single-proton distribution amplitude is close
to its asymptotic form under evolution, for which there is
growing evidence now [23]. In view of this we consider that
we make an acceptably small error in our present work by
altogether neglecting the leading-twist contribution to the
processes in question. We remark that on the other hand
the diquark model, which is a variant of the leading-twist
approach, provides reasonable fits to the data, at least for
the pp channel [24]. Notice that both the leading-twist
and the diquark approach give real-valued amplitudes in
the γγ annihilation channel. In contrast, the handbag ap-
proach makes no generic prediction: the phase of the am-
plitude is determined by the phases of the annihilation
form factors, which may or may not be small.

The annihilation form factors and the BB distribu-
tion amplitudes can presently not be calculated from first
principles in QCD. Contrary to generalized parton distri-
butions, they do not admit a direct representation as over-
laps of light-cone wave functions [7,25] either. Progress
in describing generalized distribution amplitudes within a
Bethe–Salpeter approach has recently been reported [26].
No model calculation is currently available for the annihi-
lation form factors in the s range where we need them. We
will therefore determine these form factors phenomenolog-
ically.

Let us start with information from other processes.
The E760 collaboration [27] has measured the magnetic
form factor of the proton in the time-like region for s in
the range 8.9 ÷ 13.0 GeV2. For the scaled form factor a
value of s2|G p

M | � 3 GeV4 has been found. With (6), (26)
and (41) this implies for the annihilation form factor

s2
∣
∣R p

V (s)
∣
∣ ≈ 2.4 GeV4, 3 GeV4, 5 GeV4 (44)

for ρ = 0.25, 0.5, 1, if we neglect the non-valence contribu-
tion from F s,p

V . As we already discussed, the form factor
RP involves parton orbital angular momentum. For lack
of better information we estimate the magnitude of RP

by assuming
√

s

2mp

∣
∣
∣
∣
R p

P (s)
R p

A(s)

∣
∣
∣
∣ ≈

√−t

2mp

F p
2 (t)

F p
1 (t)

≈ 0.37 (45)

for large s and t, where the numerical value is from the
measurement [12] of F p

2 (t)/F p
1 (t) in the range −t = 1 ÷

5.6 GeV2.
We now turn to the two-photon annihilation data. In-

tegrating the cross section (27) over cos θ from − cos θ0 to
cos θ0, we get

σ(γγ → BB) =
4πα2

elm

s

{
1
2

ln
1 + cos θ0

1 − cos θ0
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Fig. 2. The scaled annihilation form factor s2Rp
eff(s) as ex-

tracted from the data of [18,20], using (47) with R p
V set to zero.

The dashed line represents a fit to the data above 6.5 GeV2

×
(∣

∣
∣RB

V (s)
∣
∣
∣
2

+
∣
∣
∣RB

A(s) + RB
P (s)

∣
∣
∣
2

+
s

4m2

∣
∣
∣RB

P (s)
∣
∣
∣
2
)

− cos θ0

∣
∣
∣RB

V (s)
∣
∣
∣
2
}

. (46)

When comparing with the data we need the integrated
cross section for cos θ0 = 0.6, following the choice of the
experiments,

σ(γγ → BB) = 181 nb GeV2 1
s

×
{∣

∣RB
A + RB

P

∣
∣2 +

s

4m2
B

∣
∣RB

P

∣
∣2 + 0.134

∣
∣RB

V

∣
∣2

}
. (47)

We fit this to the data on γγ → pp̄ above s = 6.5 GeV2 ≈
(2.55 GeV)2, trying to avoid as much as possible the region
where the process is markedly influenced by resonances.
Such a fit determines the combination of form factors in
the curly brackets of (47). Neglecting the term with RB

V
we get

s2Rp
eff(s) = (6.5 ± 0.5) GeV4, (48)

with the fit shown in Fig. 2, where we have introduced the
abbreviation

RB
eff =

(∣
∣RB

A + RB
P

∣
∣2 +

s

4m2
B

∣
∣RB

P

∣
∣2

)1/2

. (49)

With our estimates (44) the contribution of Rp
V to the

cross section (47) is at most 8%. Taking it into account
would thus reduce Rp

eff by at most 4%, which is below the
error in (48). If we further use the estimate (45) of R p

P /R p
A

at s = 6.5 GeV2, we obtain

s2
∣
∣R p

A(s)
∣
∣ = (4.9 ± 0.4) GeV4 ÷ (8.0 ± 0.6) GeV4, (50)

where the errors are due to those in the fit (48) and the
range to the uncertainty of the relative phase between RA

and RP . Using the same input we get the approximate
relation Rp

eff ≈ |Rp
A + Rp

P |, with an accuracy between 4%
and 11%.

Although a behavior of Rp
eff(s) ∼ s−2 is compatible

with experiment in the s range we are investigating, a
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Fig. 3. The cross sections for two-
photon annihilation into ΛΛ (left)
and Σ0Σ

0
pairs (right) versus W =√

s. Data is taken from [19,21]. The
bands correspond to the range ρ =
0.25 ÷ 0.75 in conjunction with the
form factor Rp

eff(s) from (48), as ex-
plained in the text

somewhat different falloff is not excluded by the present
experimental data. The s dependence of our fitted anni-
hilation form factor coincides with the one predicted by
dimensional counting rules [28], as well as the correspond-
ing behavior dσ/dt ∼ s−6 of the cross section (27) at fixed
angle θ. We emphasize that this does not imply the dom-
inance of leading-twist contributions. It is also possible
that, in a way similar to wide-angle Compton scattering
[7,15], dimensional counting rule behavior is mimicked by
soft physics over a large yet finite range of s. From our
calculation of the handbag diagrams it is clear that the
form factors appearing in (25) are only the soft parts of
the matrix elements Ri(s) (i = V, A, P ) defined by (5) and
(26). According to general power counting arguments, the
soft parts of RV , RA and

√
sRP will decrease faster than

s−2 for very large s. The soft handbag contribution to the
cross section dσ/dt then falls off faster than s−6 at fixed
θ, and the hard leading-twist contribution will eventually
dominate. We remark that in the space-like region one can
use a model based on wave function overlap to evaluate the
soft parts of the Compton form factors RV (t) and RA(t)
[7]. Their asymptotic behavior in this model is a decrease
like t−4 and only sets in for −t of order 100 GeV2.

We observe that the annihilation form factor (48) is
of similar size as the time-like magnetic form factor of
the proton. The situation is thus similar to the space-
like region, where the Dirac form factor and the form
factors for wide-angle Compton scattering off the pro-
ton also behave similarly and are of comparable magni-
tude [7,15]. Recall that the Compton form factors RA

and RV are given by moments in x of generalized par-
ton distributions whose respective forward limits are the
polarized and unpolarized quark densities ∆q and q. If one
assumes that at large x these generalized parton distribu-
tions have the same x dependence as their forward limits,
up to a common factor f(x, t) for both distributions, one
obtains |RA(t)| ≤ RV (t) at large t as a consequence of
the positivity bound |∆q| ≤ q. For generalized distribu-
tion amplitudes there is no such constraint, and our es-
timates (44) and (50) suggest that one may indeed have
|RA(s)| > |RV (s)| for the annihilation form factors in the
s range of our fit.

Using the result (48) for Rp
eff we can now discuss the

cross sections for other BB channels. In view of the large
uncertainties of the data [19,21] we do not attempt to
include effects of flavor symmetry breaking and directly

use the relations (43) to investigate the relative strength
ρ between dd → pp and uu → pp transitions. In Fig. 3 we
show the cross sections for two-photon annihilation into
ΛΛ and Σ0Σ

0
pairs, with the bands corresponding to the

range
ρ = 0.25 ÷ 0.75. (51)

According to our discussion in Sect. 4 such values are phys-
ically quite plausible. Values of ρ significantly different
from (51) are not favored by the data. The estimate (51)
should of course be interpreted with due care, given the-
oretical uncertainties induced by the rather low s-values
of the data (the respective production thresholds for ΛΛ

and Σ0Σ
0

pairs are at
√

s = 2.23 GeV and 2.39 GeV), the
assumed s dependence of Rp

eff in (48), and the simplify-
ing assumptions that give the relations (43) between BB
channels in terms of a single real-valued parameter ρ. We
recall that the value in (51) essentially refers to the form
factor combination Rp

eff ≈ |R p
A + R p

P |, which dominates
the integrated cross section (47). Other BB channels can
now easily be predicted from (43). A special role is played
by the mixed channels ΛΣ

0
and Σ0Λ, whose cross sections

vanish at ρ = 1/2. For these the estimate (51) provides an
upper bound

σ(ΛΣ
0

+ Σ0Λ) � 3
2

(
1 − 2ρ

4 + ρ

)2

σ(pp) ≤ 0.02σ(pp), (52)

whose precise value should again be taken with care, given
our discussion above.

In Fig. 4 we show the angular distribution for γγ →
pp. Unfortunately, data exist only for rather small ener-
gies, where our kinematical requirements that −t and −u
should be large compared to, say, the squared proton mass,
can hardly be met. Furthermore, the influence of reso-
nances may not yet be negligible, for which there might be
a little hint in Fig. 4. At the energy of

√
s � 2.3 GeV (not

shown in the figure) the data of [18,20] exhibit a maximum
at 90◦, which is a clear signal for the dominance of low par-
tial waves and may be due to resonances. The comparison
of the handbag result with the available data should there-
fore be interpreted with due caution. The curve in Fig. 4
shows the angular distribution of the handbag result when
Rp

V is neglected in (27). Taking our estimate (44) of Rp
V

for ρ = 0.5, together with the result (48) for Rp
eff , we get

a change in the distribution that is too small to be seen in
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Fig. 4. Normalized angular distribution of γγ → pp at s =
7.3 GeV2. The solid line represents the handbag result (27)
with the form factor Rp

V neglected. Data are taken from [18,
20]

the figure. If on the other hand we take the value of Rp
V

which corresponds to ρ = 1 in (44), the angular distribu-
tion becomes somewhat steeper. We emphasize however
that the region where −t or −u is smaller than 1.5 GeV2

corresponds to | cos θ| > 0.5 for the data in Fig. 4. In this
region the handbag result has to be taken with more than
a grain of salt.

6 Concluding remarks

We have discussed the handbag contribution to two-pho-
ton annihilation into baryon–antibaryon pairs at large en-
ergy and large momentum transfer. Our main result is
that we succeeded in writing the amplitude as a product
of a parton-level amplitude for γγ → qq and annihilation
form factors given by moments of the BB distribution
amplitudes. In our derivation we have to explicitly ne-
glect contributions where the antiquark nearly takes the
momentum of the baryon and the quark the momentum
of the antibaryon. On the other hand, quark off-shell ef-
fects in the hard scattering and the bad components of the
corresponding field operators are shown to be suppressed
parametrically. An alternative treatment of the processes
under investigation is possible using double distributions
[29]. Our results also apply to the annihilation process
pp̄ → γγ, whose form factors and amplitudes are related
to those for two-photon annihilation by time reversal.

The factorization of the soft handbag diagrams is anal-
ogous to the one in wide-angle Compton scattering. For
the latter it has been shown that this factorization re-
mains valid when taking into account next-to-leading cor-
rections in αs to the parton-level subprocess [11], and one
may expect that the same holds for the time-like processes
considered here.

The handbag contribution formally represents a power
correction to the leading-twist hard-scattering mechanism,
but it seems to dominate at experimentally accessible en-
ergies. We find that the data for various BB channels are
compatible with annihilation form factors approximately
behaving as 1/s2 for s between 6 and 12 GeV2, a count-
ing rule behavior typical of many exclusive observables.

Fitting the form factors to the data, we find that for pro-
tons the sum of the axial and pseudoscalar annihilation
form factors RA + RP is dominant and somewhat larger
than the time-like magnetic form factor. A further test
of our approach is the approximate 1/ sin2 θ angular de-
pendence of the cross section, which agrees rather well
with the VENUS data. According to our estimates, the
RV term with its additional cos2 θ dependences is likely
too small to be seen in the presently available data. Fla-
vor symmetry and the absence of I = 2 components in
the qq intermediate states relate pp production to the BB
channels where B is a member of the lowest-lying baryon
octet, up to presumably moderate effects of flavor SU(3)
breaking. Fixing the relative strength ρ of the form factors
governing dd → pp and uu → pp transitions from suitable
and sufficiently accurate data of two BB channels allows
one to predict all other ones.

We emphasize that our comparison with experiment
suffers from the low energies where data are currently
available. For these energies the kinematical requirements
of the handbag approach are hardly satisfied. Nevertheless
we arrive at a satisfactory description of the data for the
three channels pp, ΛΛ and Σ0Σ

0
, taking as soft physics

input the effective form factor Rp
eff(s) and the flavor pa-

rameter ρ with values in agreement with the physical in-
terpretation of these quantities. We finally remark that
measurement of the process pp → γγ with better statis-
tics and at higher energies would likely be possible at the
proposed HESR project at GSI [30].
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Appendix: Spinor conventions

In our calculations we have used spinors for (anti)quarks
and (anti)baryons that correspond to states with definite
light-cone helicity [31]. In the usual Dirac representation
they read

u(p, +) =
1

√
2(p0 + p3)








p0 + p3 + m

p1 + ip2

p0 + p3 − m

p1 + ip2








,

u(p, −) =
1

√
2(p0 + p3)








−p1 + ip2

p0 + p3 + m

p1 − ip2

−p0 − p3 + m








,
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v(p, +) =
1

√
2(p0 + p3)








p1 − ip2

−p0 − p3 + m

−p1 + ip2

p0 + p3 + m








,

v(p, −) =
1

√
2(p0 + p3)








−p0 − p3 + m

−p1 − ip2

−p0 − p3 − m

−p1 − ip2








. (53)

This corresponds to the phase conventions used by Brod-
sky and Lepage, cf. [32], and also to those of Kogut and
Soper [31] if one takes into account that they use a differ-
ent representation of the Dirac matrices. The antiquark
spinors in (53) satisfy the charge-conjugation relations
v(p, ν) = S(C)uT(p, ν) with S(C) = iγ2γ0. For massless
spinors one simply has v(p, ν) = −u(p, −ν).
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Note added in proof: After this work was finished, new
data for the pp̄ channel were published by OPAL [33]. In
the high-s range they agree with the results from CLEO
and VENUS we have referred to in Sect. 5.


